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Abstract: A global contour plot is described for reactions involving stepwise or concerted addition of two ethylenes 
to form cyclobutane. The relevant isomers of the various species and of the reaction paths, with plains or valleys, 
minima, saddle points, and domes or conical intersections, are described. Two collective asymmetric coordinates 
are introduced as axes for the plot, which presents an overview of the system and which complements the usual 
2-dimensional cuts of the many-dimensional potential energy surface. Other global coordinates are also introduced. 
The plot involves a pointwise minimization of the potential energy with respect to the coordinates not used as axes. 
A permutation symmetry can be used to derive the various coordinates. Free energy and entropy (or number of 
states) curves versus a reaction coordinate are discussed. 

Introduction 

In a previous paper a global potential energy contour plot 
was described, using several chemical reactions as examples.1 

Systems with a number of isomers of the reactants, products, 
intermediates, and transition states were depicted using such a 
plot. It focuses on the overall topography of the potential energy 
surface and provides a "bird's eye view" of the various 
alternative paths in the reacting system. It complements, 
thereby, the typical 2-coordinate cuts of the potential energy 
surfaces that are functions of the many internal coordinates, 3n 
— 6 for an n atom nonlinear system. 

In the present article these arguments are extended to the 2 
+ 2 cycloaddition, the combination of two ethylene-like 
molecules to form a cyclobutane-like molecule, either in a 
concerted or in a stepwise manner, the latter involving a diradical 
intermediate. The reactions are represented schematically by 
eqs 1 and 2: 

where the diradical in eq 2 may be gauche or trans and where 
actual changes in bond lengths and angles are not indicated. 

Aspects such as Woodward—Hoffmann orbital symmetry 
considerations have been examined in the literature of potential 
energy surfaces and play a role in such systems. Recently 
Zewail and co-workers2 observed and measured in real time 
the conversion of the diradical, prepared in a different manner, 
to two ethylenes or to cyclobutane. The present work was 
prompted by such experiments and by electronic structure 
calculations and detailed analyses of potential energy surfaces 
by Bernardi, Robb, and co-workers for the 2 + 2 cycloaddition 

® Abstract published in Advance ACS Abstracts, April 15, 1995. 
(1) Marcus, R. A. / . Phys. Chem. 1991, 95, 8236. 
(2)Pedersen, S.; Herek, J. L.; Zewail, A. H. Science 1994, 266, 1359. 

system.3-4 We also draw upon the detailed calculations of 
Doubleday.5 

Global Potential Energy Contours 

Introduction. The system considered involves a pair of 
ethylene-like molecules, four diradicals, and one cyclobutane-
like molecule (Figure 2, given later). Using a single "global" 
potential energy contour diagram, we wish to depict all such 
structures, their transformations into each other, the different 
reaction paths involved, and the overall topography of the 
surface. We also wish to consider reaction coordinate plots of 
the free energy (canonical system) or entropy (microcanonical), 
their construction, and their use in transition state theory for a 
canonical system and in RRKM theory for a microcanonical 
one. 

In a global potential energy contour plot, topographical 
features such as valleys or plains, minima, domes or cones 
(conical intersections), and saddle points may be depicted for 
the entire system, including those of the relevant isomers. When 
the system is not exactly symmetric, similar considerations may 
remain applicable: In principle at least, properties, such as 
minima, saddle points, domes, and conical intersections of a 
less symmetrical system can be mapped onto those of the 
corresponding symmetric one and used as a guide for choosing 
suitable coordinate axes for the plot for the less symmetrical 
system. 

In current quantum electronic structure studies, the potential 
energy surface has been calculated for a possible concerted 
reaction of two ethylenes, reaction 1, and for a stepwise 
mechanism involving instead a diradical intermediate, reaction 
2 (e.g., refs 3—5). For the four carbons there are 3« — 6, or 
six, relevant internal coordinates, plus 24 additional internal 
coordinates of the four methylenes. A first task in making the 
global plot is to select from these thirty coordinates two that 
are particularly suitable for its construction. Usually, they will 
be collective asymmetric coordinates. The coordinates differ 

(3) Bernardi, F.; De, S.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 
1990, 112, 1737. 

(4) Bernardi, F.; Bottoni, A.; Robb, M. A.; Schlegel, H. B.; Tonachini, 
G. J. Am. Chem. Soc. 1985, 107, 2260. 

(5) Doubleday, C. / . Am. Chem. Soc. 1993, 115, 11968. 
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Figure 1. Typical coordinates for a pair of ethylenes.4 The wedges 
and the dashes denote CH bonds, and the angles and lengths are not 
drawn to scale. 

1. 

Coordinates and Regions in the Global Plot. A trans 
attachment of the pair of ethylenes in Figure 2a yields the 
diradicals in Figures 2b and 2c. A subsequent transition to the 
gauche form to permit a cyclization yields the cyclobutane in 
Figure 2g. (In any structure in Figure 2 only the internuclear 
distances are specified, the spatial orientation of the structure 
as a whole being arbitrary.) From this cyclobutane the diradicals 
in Figures 2d and 2f can be generated and from them the 
ethylene pair in Figure 2b. 

A global plot will include all the structures in Figure 2. 
Coordinates can be selected so that the cyclobutane occupies 
the center, the four diradicals each of the four quadrants, and 
the two ethylene pairs the regions at either end of a coordinate 
axis. Initially, I obtained the six coordinates given below 
intuitively, but subsequently showed that they could be obtained, 
instead, systematically, using a particular permutation symmetry. 
The latter derivation is given later in this section. 

The coordinates q\ and qi chosen as axes for the plot are 

Ii = ^[(ri4 + rn) - O13 + r24)] (3) 

(a) 
2 4 

(b) 

?2 = /atOu + rn) - O23 + r24)] (4) 

1 • 

(C) (d) 

• 2 
1 3 

ffl 

3 

(g) 
Figure 2. Structure for a and b ethylene pairs (each line representing 
a double bond, in this case only); c—f diradicals, and (g) cyclobutane. 

from the internal coordinates typically used for the four carbons 
in reactions 1 and 2: r\, r2, oti, a2, R, and <p, given in Figure 1 
and taken from ref 4 (Scheme III there). The geometries 
considered in ref 4 mainly have r2 = r\ and Ct2 = a i , as in the 
configurations in Figure 2. We first give the global coordinates 
for a trans attachment of the ethylenes and in a later section 
those for a gauche attachment. 

The normalization factors and those in qi to q$ given below 
make the transformation, which is an orthogonal one, distance 
conserving (cf. Appendix A). 

One role of q\ is to serve as a separation distance coordinate 
for each pair of ethylenes in Figure 3. Another, it will be seen, 
is to serve as a major component of the reaction coordinate in 
the saddle-point region for the formation of the trans diradical. 
Each ry denotes the distance between the atoms (/, f). In the 
global plot the 4 remaining carbon coordinates and the 24 
internal ones of the CH2's are adjusted pointwise so as to 
minimize the potential energy at each value of (^i, qi). 
Functions of ry such as rf could be used in eqs 3 and 4 instead 
of ry. In the minimization, resulting in a projection of a 30-
dimensional plot onto 2, a nearby local minimum rather than 
an absolute one is selected, such as to maintain a physical 
continuity of each reaction path. 

It is supposed in Figure 3 that to yield a better reaction path 
there is no advantage in having a 90° rotation of one ethylene 
relative to the other prior to the formation of a diradical. In 
this way, from each configuration of the ethylenes in Figure 3 
only two paths for diradical formation need be considered in 
constructing the plot, instead of four. One problem which exists 
when a many-dimensional plot is projected onto a two-
dimensional one is that various originally separate paths and 
structures may now overlap on the projected space. This 
problem is avoided by this condition in Figure 3. 

Keating and Mead6 noted that for n = 3 and 4, the number 
of independent distances n(n — l)/2 equals the number of 
internal coordinates of a nonlinear system, 3n — 6, so these 
distances or functions of them could be used for the coordinates 
in these two cases. For their particular purpose they used r,y2's 
instead of r,/s in their choice of six coordinates, which partly 
differed from ours since they were interested in the properties 
of the full S4 permutation group.6 Those coordinates do not 
have the symmetry properties desirable for the present global 
plot, which involves particular permutations and a different goal. 

For the four remaining coordinates for the four carbons we 
introduce qi to qg. 

93 = 1Z2[Ol4 +
 rld ~ Ol3 + r2l)] (5) 

(6) Keating, S. P.; Mead, G. A. J. Chem. Phys. 1987, 86, 2152. 
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Figure 3. Global contour plot for reactions 1 and 2 when the attachment of the ethylene pairs is trans. 

_ i 
«4 = llfrn + r\A + r2l + r24] 

Ie = -7r(rl2 + r34) 

(6) 

(7) 

(8) 

where qi is another asymmetric coordinate, qa, is a symmetric 
"breathing" coordinate, and q$ is asymmetric and qe symmetric 
in m and r34, the two coordinates not present in q\ to qa,. The 
inverse of the transformation, namely from the q's to the r's, is 
given in Appendix A. 

Of these coordinates #5 is zero for all of the structures 
specifically depicted in Figures 2 and 3. The asymmetric 
stretching coordinate qi is seen from eq 5 and Figure 2 to vanish, 
like qi, for the face-to-face geometry of the two pairs of 
ethylenes and for the cyclobutane (puckered or not). Had the 
diradical structure in Figure 2f been placed in the upper right 
instead of the lower right quadrant of Figure 3, qi rather than 
qz would have been the appropriate axis for that figure. The 
coordinate q$ has the same value for all four diradicals. Its 
value for one ethylene pair is also the same as for the other. A 
similar remark applies to q*. The puckering angle in C4H10 
can be expressed in terms of the ratio qajq^. q\ = q\ for a 
planar C4H10 and q\ > q\ for a puckered one. 

In the two broad plains in Figure 3 the minimization of the 
potential energy V at any given q\ and qi fixes the values of 
only TH and r23. It thus leaves as arbitrary there the values of 
two of six coordinates, for the given q\ and qi. 

The coordinates q\ and qi are antisymmetric and 93 to qe are 
symmetric with respect to the interchange of atoms 1 and 2, 
i.e., with respect to the permutation (12); q\ and #3 are 
antisymmetric and the other q's are symmetric with respect to 
the permutation (34). These results can be used to generate 
from any one structure in Figure 2 all equivalent structures there 
and to generate from one quadrant in Figure 3 the remaining 
three quadrants, remembering that only the internuclear distances 
in the global plot are specified, the spatial orientation of any 
structure being arbitrary. For any given numbering in a 

cyclobutane there are two buckled isomers, mirror images of 
each other and each thermally accessible from the other. (The 
barrier is about 510 cm - ' . ) 7 

This permutation symmetry in Figure 2 can be used to define 
q\ to qa, uniquely, apart from normalization: To generate q\ to 
qa, from the permutations (12) and (34) only the four r,/s which 
are altered by these permutations are considered, that is, m and 
3̂4 are excluded. There are only four combinations of n/s which 

show symmetry or antisymmetry with respect to these two 
permutations. They are the q\ to qa, defined in eqs 3 - 6 . The 
remaining two coordinates #5 and q(, provide the simplest 
complement to q\ to qa, which preserves orthogonality. 

For comparison with a simpler system O3 (e.g., ref 1 and 
references cited therein), where there are only three coordinates, 
we note that the basic configuration there is an equilateral 
triangle. (The coordinates q\ to qe can be regarded as deforma­
tions of a square.) The two coordinates used to distort the 
triangle in the global plot are two asymmetric stretches, while 
the third coordinate, a symmetric stretch, can be adjusted 
pointwise so as to minimize the potential energy or can be held 
fixed. The global plot has three symmetrically related con­
figurations of ozone, each an isosceles triangle with three saddle 
points separating them and one conical intersection at the center 
of the triangle. 

The plot in Figure 3 describes reactions 1 and 2, with reaction 
2 considerably favored, and contains the isomeric structures 
present in Figure 2, together with the reaction paths involving 
them. In Figure 3 two broad plains are seen which correspond 
to the two pairs of CjHt's. They have the face-to-face structure 
depicted in Figures 2a and 2b, when qi = q-i = #5 = 0. There 
are also four regions corresponding to the four diradicals, with 
the structures indicated in Figures 2c—2f, and a central potential 
energy minimum, corresponding to the C4H8 in Figure 2g. The 
assignment of these particular structures to the various regions 
in Figure 3 can be made with the aid of eqs 3 and 4 as follows, 
letting q-i—qe vary as needed: 

When the systems is in the form of the (14, 23) pair of CaHt's, 
drawn in Figures 2 and 3, r\i and r24 in Figure 2a are relatively 
large compared with r\a, and r?$, while r\% = 2̂4 and r\a, = r23 

(7) Egawa, T.; Fukuyama, T.; Yamamoto, S.; Takabayashi, F.; Kambara, 
H.; Ueda, T.; Kuchitsu, K. J. Chem. Phys. 1987, 86, 6018. 
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in a face-to-face geometry. It follows from eqs 3 and 4 that q\ 
is fairly large and negative, and that qi = Q for the face-to-face 
geometry. (For nonequal values of ru and ru at large \q\\, 
however, qi is typically not zero, and so we have a broad plain.) 
This pair of ethylenes occupies the left-hand plain in Figure 3. 
The pair of ethylenes depicted in Figure 2b occupies the right-
hand plain, as can be seen by arguing directly as above or using 
a permutation argument. (For example, a permutation (12) leads 
to a change of sign of ^i, and leaves qi = 0 intact, with the 
other q's changing as needed. It leads to the given labels in 
the ethylene pair in the right side of Figure 3, remembering 
that one can rotate the pair as a whole.) 

When the diradical intermediate has the structure given 
schematically in the upper left quadrant of Figure 3 (cf. Figure 
2c), rn + riA exceeds ru + m, and so q\ is negative. Since 
r\3 is also larger than Y2A in that Figure, while ru = r23, qi is 
moderately large and positive. The depicted diradical structure 
therefore occupies the upper left region in Figure 3. The other 
three diradicals in Figures 2d to 2f are assigned to the regions 
indicated in Figure 3, again either arguing directly or using a 
permutation argument. 

Considering next the region in Figure 3 occupied by the 
cyclobutane, the appropriate sequence of the numbers of the 
atoms (apart from any overall rotation of the structure) is as 
given in Figures 2g and 3: Only this structure has r\% = r2i = 
ru = ru and hence, according to eqs 3 and 4, only it can exist 
at the origin, q\ = qi = Q. Any permutation of the numbering, 
apart from that equivalent to an overall rotation, would 
correspond to a different point in (q\, qi) space. 

Reaction Paths, Saddle Points, Separatrices, and Domes. 
In Figure 3, each broad plain occupied by a pair of ethylenes is 
separated from a nearby diradical region by a saddle-point 
region, and with it a separatrix. The reaction path for the first 
step of reaction 2 proceeds from the left-hand plain to the upper 
left or lower left diradical region, as indicated by the arrow 
(really a phalanx of arrows) crossing the saddle-point region. 
The second step in reaction 2 is the passage from that diradical 
region to the central C4 minimum in the figure. In ref 3, there 
is a small local maximum en route, resulting in a saddle-point 
region and hence in a separatrix, as in Figure 3. It will be noted 
that at each saddle point the contour lines cross (e.g., Appendix 
B) and form, thereby, the arms of a separatrix. There are also 
seen in Figure 3 three other symmetrically related saddle points 
and reaction paths from a pair of ethylenes to a diradical. 
However, whether a saddle point survives an energy minimiza­
tion is discussed in Appendix B and considered later in this 
article. 

We describe next the reaction paths in Figure 3, the first being 
between the left-hand ethylene pair and the trans diradical in 
the upper left region of the figure. In proceeding from that 
ethylene pair to this diradical, m and r24 decrease, r24 more 
than rn, and then ru and rzz increase slightly. The system 
reaches the saddle-point Sa in the upper left region. These ry 
changes are seen from eqs 3 and 4 to lead mainly to the q\ 
becoming less negative and 2̂ becoming somewhat positive. 
The reaction path in the vicinity of the saddle-point S0 thus has 
both a q\ and «72 component, as indicated schematically in Figure 
3. Either arguing directly as above or using a permutation 
argument, the reaction paths indicated in the vicinity of the three 
corresponding saddle points in Figure 3 are obtained. 

According to the calculations in refs 4 and 5, the trans form 
of the diradicals depicted in Figures 2c—2f has a slightly lower 
potential energy than the gauche form. Along the reaction path 
leading to the cyclobutane from any of the diradicals the 
diradical will, with the pointwise minimization of the potential 
energy along the path, change from trans to gauche and so 

permit ring closure to occur. We consider later the saddle point 
between the trans and gauche conformations of the diradical. 

The saddle-point Sd separates the gauche diradical from the 
cyclobutane region in the upper left quadrant. The m is the 
coordinate principally changing there on passage across Sd and 
is seen from eqs 3 and 4 to have both a q\ and a qi component, 
as indicated by the arrow at that Sd saddle-point region. Related 
remarks apply to the corresponding three gauche diradical-
cyclobutane saddle points in the other quadrants. 

There are two "domes" D drawn in Figure 3, which block 
the direct path from each ethylene-pair plain to the central 
minimum. Each dome is an island created by being enclosed 
by the contours joining the saddle points surrounding it (the 
S''s in the case of the dome on the left side of Figure 3). It can 
be seen from the numbering of the atoms in each ethylene pair 
and in the cyclobutane that a very large internal rotation of the 
ethylene pairs of about 180° (perhaps less by twice the dihedral 
puckering angle7 of 28°) would have to occur in order to reach 
the point q\ = #2 = 0 from large \q\\ along the q\ axis. 
However, the calculations in ref 4 indicate that the [2S + 2J 
formation of cyclobutane involves only a relatively small angle 
of internal rotation (~40°) to reach the saddle point and so 
corresponds, instead, to a saddle point given later in Figure 4. 
Thus, in Figure 3 there is a very large barrier, indicated by a 
high dome D, which may have a more complicated structure 
and which is presumably higher than the barrier at the saddle 
point on the x axis in Figure 4. As in Figure 4, the diagram is, 
in the absence of calculations of the minimized surface, partly 
a guess from the available calculations. 

The trans-gauche diradical transition and its saddle point in 
each of the four quadrants of Figure 3 (not shown) are explored 
next: Certain of the qi coordinates can be shown to have a 
"global <p" component, i.e., to have a component from internal 
rotation about the central CC bond in the diradical: The trans 
diradical structures in Figures 2c—2f may be compared with 
the corresponding gauche structures by rotating by 180° in 
Figures 2c—2e the line joining atoms 2 and 3 about the 2—4 
axis, and by rotating by 180° in Figures 2d—2f the line joining 
atoms 2 and 4 about the 1—4 axis. The principal change in the 
upper left diradical is in r^. We see from eqs 3—6 that q\ —qa, 
all contain the reaction coordinate for the 180° rotation {r^ in 
the upper left quadrant, ru in the upper right, etc.). Therefore, 
q\ to qt, all contain a "global q>" component. The separatrix 
will appear in each case in a minimized plot only if the local 
reaction coordinate is not a major component of the minimized 
variables, the amount permissible depending on ratios of the 
various local force constants (Appendix B). 

The two-dimensional global plot in Figure 3 can be extended 
to a three-dimensional transparent model, using as coordinate 
axes the three asymmetric coordinates q\—qi. It would have 
contour surfaces (equipotential surfaces) instead of contour lines, 
and the pointwise minimization would now be with respect to 
qt—qe- The four radicals would occupy four of the octants of 
the model, symmetrically placed in a tetrahedral-like fashion. 
Equipotential surfaces using different coordinates are given by 
Michl and co-workers for the H4 system.9 In order to obtain 
Figure 3 from a calculated potential energy surface we noted 
earlier that only one quadrant need be computed, since the 
remaining three are obtained by a permutation symmetry. 
Similarly, in the three-dimensional global plot only two octants 
need be computed, one containing a diradical and the other not. 

Starting, instead, from any of the diradicals, there are seen 
in Figure 3 two paths for reaction, one leading to fragmentation 
to form two ethylenes and the other leading to cyclization to 
form cyclobutane. Doubleday5 recently considered the frag­
mentation and cyclization of the diradical, noting that the rates 
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Figure 4. Global contour plot for reactions 1 and 2, when the attachment of the ethylene pairs is gauche. 

were independent of the precursor. A second topic, the principal 
focus of Doubleday's work, is a discussion of the ratios of 
stereoisomers formed. It involves an analysis of the internal 
coordinates of the CH2's (e.g., ref 5) and so would not be 
explicitly exhibited in the present global plot. A different plot, 
focusing on a particular region of Figure 3 and on the CH2 
twisting coordinates, will be considered elsewhere. 

Gauche Attachment of the Ethylene Pairs. We comment 
briefly here on the gauche attachment of the ethylene pairs and 
the relevant global plot, Figure 4. The concerted face-to-face 
[2S + 2S] addition is Woodward—Hoffmann forbidden,89 and 
involves a conical intersection.3 A more favorable approach is 
[2S + 2a], which has a first-order saddle point4 (with a high 
barrier). In this transition state the angle of torsion of the two 
ethylenes is calculated4 to be about 40°. The saddle point is 
depicted in Figure 4, perhaps with domes on each side. 

Examination of the relevant structures reveals that new 
coordinates are needed for the global plot: In the gauche 
approach atoms 4 and 3 and/or 1 and 2 in Figure 2a become 
attached. There is now no longer any large internal rotation 
involved in forming the cyclobutane, and so the atom numbering 
in the cyclobutane and in the second pair of ethylenes is that 
given in Figure 4. Also given there are the various gauche 
attachments to form the diradicals. The appropriate coordinates 
Qi for the structures in Figure 4 are now symmetric or 
antisymmetric with respect to the permutations (24) and (13), 
instead of (12) and (34). The new coordinates Q< can therefore 
be obtained by an argument identical to that given earlier for 
qi s. The result can be written for brevity in a matrix form 

Q = AR (9) 

where Q and R are column vectors with components Qi, ..., 
Q6, and r^, rn, ni, H4, H3, r24, respectively. A, given in 

(8) Kash, R. W.; Waschensky, G. C. G.; Moras, R. E.; Butler, L. J.; 
Franci, M. M. / . Chem. Phys. 1994, 100, 3463. Waschensky, G. C. G.; 
Kash, R. W.; Myers, T. L.; Kitchen, D. C; Butler, L. J. J. Chem. Soc, 
Faraday Trans. 1994, 90, 1581. 

(9) Gerhartz, W.; Podhusta, R. D.; Michl, J. / . Am. Chem. Soc. 1976, 
98, 6427. Cf.: Michl, J.; Bonacic-Koutecky, V. Electronic Aspects of 
Organic Photochemistry; Wiley: New York, 1990; pp 244—245. 

Appendix A, is an orthogonal matrix and consists of the two 
block matrices Ai and A2 in eq A2. 

When there is a face-to-face [2S + 2S] approach of the pair 
of ethylenes in the left side of Figure 4, we have ri2 = r^ and 
Qi = Qi — Qs — 0. A [2S + 2a] approach also satisfies these 
conditions. However, for any given value of Q\ these two 
structures occur at two different points in the (QA, Qe) subspace. 
They differ in their local topology,3,4 since the [2S + 2a] structure 
occurs at a saddle point and the [2S + 2S] occurs at a conical 
intersection.3,4 The condition for face-to-face [2S + 2S] approach 
is Ql Ql and, for the [2S + 2a] configuration, Q\ > Q\. The 
conical intersection entails a 2-fold barrier to reaction: The cone 
is high. Its existence also reflects the Woodward—Hoffmann 
restrictions (nonadiabaticity)48 and leads to a diversion of the 
path, so as to go around the cone. In the minimization, the [2S 

+ 2d saddle-point approach is the preferred one and is the one 
depicted in Figure 4. 

Exhibition of the Separatrices. We consider next when and 
how the separatrices may appear or disappear in a global plot. 
Only one quadrant of Figure 3 need be considered, e.g., the 
upper left, as discussed earlier. Analogous remarks apply to 
the other quadrants and to Figure 4. 

We examine first the trans-gauche diradical saddle point, since 
as discussed earlier only the coordinate rn appears to change 
significantly in the upper left quadrant on crossing the saddle 
point along the reaction path (the path for which the saddle 
point has a negative curvature). All four variables q\ —qt, contain 
rn, and whether or not a separatrix appears in the minimized 
plot depends in the local force constants cPV/dqidqj at the saddle 
point and on the content there of the reaction coordinate (largely 
ru in the upper left quadrant) in the (q\, qi) pair. This 
appearance or nonappearance of a saddle point in a minimized 
plot, the global plot, is discussed in Appendix B. 

In the case of the cyclization of the gauche diradical, a passage 
through a saddle point in the upper left quadrant of Figure 3 
presumably involves mainly a decrease in the r^ coordinate, 
with a small increase in r\A and r23 and a small decrease in r24-
In the case of the fragmentation of the trans diradical (saddle 
point Sd in Figure 3) the 7-24 in Figure 2c increases, with a smaller 
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decrease in ru and r^ (T\A = ^ ) . Once again, the appearance 
of a separatrix in each case depends on the properties mentioned 
above. 

G(T4) or S(Ej) Curves 

We consider next the plots of thermodynamic properties along 
a reaction coordinate q, in particular the plot of a free energy 
G(T,q) in a canonical system, i.e., a system at temperature T, 
or the entropy S(E,q) in an isolated molecule, i.e., a microca-
nonical system of energy E and total angular momentum J. We 
first note that each diradical has a significant entropy compared 
with the cyclo C4 compound, since the former has a number of 
internal rotations. The various coordinates not specified in 
Figure 3, i.e., the 4 remaining coordinates of the four carbons 
and the 24 other coordinates of the four methylenes, contribute 
to the entropy. Thus, in addition to any potential energy well 
of the diradical in Figure 3, there is an entropic contribution to 
a "free energy" well. To calculate G(T,q) or S(E,q) appropriate 
statistical ensembles are used, as noted later. 

When the transition state is "tight", i.e., has only small-
amplitude vibrations, and when there is a fairly peaked 
maximum of the potential energy V along the reaction path, 
the choice of the reaction coordinate q and its value q* in the 
transition state and the calculation of the properties of the 
transition state, G(T,q*) or S(E,q*), are standard. Only when 
there is some flexibility in the motions transverse to the reaction 
coordinate, e.g., when there are large-amplitude internal rotations 
and when V is not strongly peaked at some q, does one need to 
use a variational type of transition state theory, as well as to 
choose with care the nature of q. Such flexible systems were 
the subject of a series of recent papers on RRKM theory and 
its variational form (cf. refs 10 and 11 and references cited 
therein). 

We consider this "nontight" or "flexible" transition state 
theory10'11 next. In plots of G(T,q) or S(E,q) versus a reaction 
coordinate q, one task is to define q. Its nature will differ for 
the different paths in reactions 1 and 2. When a particular 
reaction coordinate q is introduced, e.g., from the left-hand 
valley to the upper left diradical region, i.e., for the first step in 
reaction 2, it defines a family of hypersurfaces, each differing 
in its value of q. Various choices of q, and indeed optimum 
choices of q among a class of reaction coordinates, for obtaining 
a rate constant have been discussed by Klippenstein,12 and we 
refer the reader to his work. 

Given some choice of the nature of q, not yet the best choice, 
one can calculate by statistical mechanics in the canonical case 
the free energy G(T,q) for each member of the family of 
hypersurfaces, i.e., for each value of q. For the canonical case 
we have 

k{T) = mmk^-[G(J-")-G'<T)VkT (10) 
q h 

where G(T,q) is the free energy as a function of q at the given 
temperature T and G(T) is the free energy of the reactants. This 
expression for variational transition state theory has a long 
history (cited in ref 10), and its fullest exposition and application 
is given in articles by Truhlar and co-workers (e.g., ref 13). 

The best choice of the form q will make k(T) as small as 
possible when the form12 of q and the value10-12 of q itself are 
both varied. In terms of Wigner's concept14 of a transition state, 
the optimum form and value of q is the one for which the system 

(10) Wardlaw, D. M.; Marcus, R. A. Adv. Chem. Phys. 1987, 70 (Part 
2), 231. 

(11) Klippenstein, S. J.; Marcus, R. A. J. Phys. Chem. 1990, 93, 2148. 
(12) Klippenstein, S. J. Chem. Phvs. Lett. 1994. 214. 418. 

makes the fewest recrossings of the transition state. His ideas 
represented a dynamical advance over the more user friendly 
ones of Eyring15 and of Evans and Polanyi.16 

In the microcanonical case one can calculate N(E,J,q), the 
number of quantum states, as a function of q. This N(EJ,q) is 
related to the corresponding entropy S(E,J,q) by the Boltzmann 
expression, 

S(E,J,q) = kVaN(E,J,q) (H) 

The rate constant k(E,J) is given by the variational RRKM 
value (cf. refs 10, 11, 17 and references cited therein). 

k(E,J) = min N(E,J,q)/hg(E,J) (12) 

where Q denotes the density of states of the parent molecule. 
The actual k(EJ) is obtained, as indicated in eq 11, by choosing 
q so as to minimize N(E,J,q). This choice for k(E,J) can be 
termed variational RRKM theory, having been first introduced 
in this context17 (cf. also footnote 10 of ref 10). It may be 
recalled that RRKM theory is the microcanonical form of 
transition state theory: The transition state theory of Eyring15 

and of Evans and Polanyi16 was designed for a reaction at 
constant temperature. In formulating RRKM theory,18 the idea 
of a transition state was combined with the statistical RRK (Rice, 
Ramsperger, Kassel) concepts of the 1920s and used to describe 
the reactive behavior of molecules of energy E. 

The G(T,q) or S(E,J,q) appearing in eqs 10—12 are defined 
using a hypersurface, i.e., using an (n — l)-dimensional subspace 
in an n-dimensional space. Each hypersurface of a family is 
characterized by a value of q. One of these, at q = q*, 
constitutes the transition state of the reaction and, in the case 
of the tight transition state, passes through the saddle-point 
region separating the reactants from the products. Thus, when 
the transition state is "tight", the choice of the nature of q and 
of its value of q* in the transition state is standard (the 
minimization would yield a q* in which the saddle point is on 
the hypersurface q = q*). Equations 9 and 11 can be simplified, 
thereby, by omitting the "min" and replacing q by this q*. 

The method of choosing a suitable family of hypersurfaces 
becomes challenging when there is no marked potential energy 
maximum (and so no marked saddlepoint) along the reaction 
path. A method of taking into account the role of many low-
frequency coordinates and choosing the transition state was the 
focus of recent studies on the variational form of RRKM 
theory.10-12'17'19 As noted earlier, an insightful choice of the 
optimum in a class of g's is treated in the recent work of 
Klippenstein.12 

There are seen in Figure 3 several reaction coordinates q, 
one for each reaction. The q in reaction 2 leads from the upper 
left diradical region through the neck to the central potential 
energy minimum. The reaction coordinate for the concerted 
reaction, reaction 1, leads instead directly from the left valley 
to the central well, but in Figure 4 it is typically diverted to 
either side of the conical intersection D, to avoid the highest 
energy regions and to enhance the "adiabaticity" (the act of 
staying on a single potential energy surface, here the lowest). 

(13) Truhlar, D. G.; Isacson, A. D,; Garrett, B-. C. In Theory of Chemical 
Reaction Dynamics; Baer, M., Ed.; CRC Press: Boca Raton, FL, 1985; 
Vol. IV, p 65. 

(14) Wigner, E. Trans. Faraday Soc. 1938, 34, 29. 
(15) Eyring, H. J. Chem. Phys. 1935, 3, 107. 
(16) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875. 
(17) Marcus, R. A. J. Chem. Phys. 1966, 45, 2630. 
(18) Marcus, R. A.; Rice, O. K. J. Phys. Colloid Chem. 1951, 55, 894. 

Marcus, R. A. J. Chem. Phys. 1952, 20, 359. 
(19) Klippenstein, S. J.; Kress, J. D. J. Chem. Phys. 1992, 96, 8164. 

Klippenstein, S. J. Ibid. 1992, 96, 367. Wardlaw, D. M.; Marcus, R. A. 
Chem. Phxs. Lett. 1984, 110. 230. 
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It is evident from this description that there are three distinctly 
different reaction coordinates in reactions 1 and 2. Thus, one 
should not draw, as one might be tempted to do, the entropy 
S(EJ,q) or free energy G(T,q) versus reaction coordinate curve 
for reaction 1 on the same plot as the corresponding curve for 
either of the two steps in reaction 2. In any comparison of plots 
of entropy or free energy curves versus a coordinate q for two 
systems, as in the free energy curves for weak overlap electron 
transfers, the ensemble of configurations selected should be 
identical for the two curves, if the comparison is to be 
meaningful. This latter consideration was especially important 
in constructing free energy curves vs reaction coordinate for 
electron transfer reactions.20 

On a somewhat different topic, we also note that any 
isomerization of one diradical into another, e.g., from the upper 
left region in Figure 3 to the upper right, is impeded in that 
figure both by there being a barrier en route and by the trajectory 
proceeding on the side of a hill. It would tend, in the process, 
to become diverted into the Ct, minimum. 

Second- and Higher-Order Saddle Points 

Among the other topographical features of a surface are the 
second- and higher-order saddle points, i.e., saddle points which 
have two or more negative eigenvalues for the local force 
constant matrix (the Hessian), whereas an ordinary saddle point 
has only one. As noted in ref 4 a second-order saddle point 
found there had no particular chemical significance, but we 
comment briefly on it and on domes. 

A second-order saddle point was found4 for the rectangular 
transition-like structure ((Xi = a.i = nil) and for the trapezoidal 
structure (ai = (X2 ̂  Jtl2) in a topographical map of V in a 
restricted subspace. The V was a maximum at cp = 0, i.e., 3Vl 
dcp = 0 and a negative value for 32VIdCp2. It yielded the second 
negative eigenvalue, for the force constant matrix in this 
subspace. Subsequent variation of cp yielded a cp for which 
dV/dcp = 0 and a positive value for d2V/dcp2. The point so 
reached was now a local minimum, as a function of cp, and 
was the (first-order) saddle point for the following reaction: 
ethylene pair — diradical. In a topographical map in ref 4 
(Figure 7 there), the second-order saddle point appears topo­
graphically as a first-order saddle point, but only because cp 
was held fixed in the map. 

If a dome, rather than a conical intersection, appears after a 
minimization then it is a second-order saddle point in the 
minimized plot and serves to divert a reaction path, as in Figures 
3 and 4. 

Summary and Concluding Remarks 

The global plot is intended to present an overall picture of 
the various processes, their relationship with each other, and 
the overall topography of the surfaces, such as the minima, the 
saddle points, and conical intersections. As such it is comple­
mentary to usual contour or topographical plots, which are 
2-dimensional cuts of the potential energy surface in the many-
dimensional coordinate space and which focus on local regions 
of that coordinate space. A different type of plot is one in which 
a profile of the potential energy surface for the cyclization of 
the diradical and the profile for the fragmentation are plotted 
versus the same reaction coordinate. The plots in Figures 3 
and 4 make it very clear that the reaction coordinates for the 
processes are very different, and hence that the above 1-D plot 
is incorrect. A potential shortcoming of the global plot is a 
possible distortion of a surface feature such as a saddle point 

(20) Marcus, R. A. Discuss. Faraday Soc. 1960, 69, 21. 

as a result of the minimization process. It will be interesting 
to see how the global plot appears in an actual calculation using 
an ab initio surface. 

In ref 1 a global plot was used to explore why one of the 
transition states for an H3O system, not previously located in 
an ab initio calculation of the potential energy surface, was not 
found. It is perhaps too much to expect in a reaction so well 
studied as the concerted vs stepwise cycloaddition of two 
ethylenes that the new type of plot will provide new insights. 
One feature which emerges from Figures 3 and 4 concerns the 
comparison between a concerted and a stepwise process: The 
comparison will differ, depending on whether a trans or a gauche 
attachment of the ethylenes is considered in the stepwise 
reaction: In the trans attachment, the appropriate concerted 
reaction according to Figure 3 is a [2S + 2a] reaction which 
occurs along the q\ axis in Figure 3 and thereby involves an 
unusually large internal rotation, the twisting of one ethylene 
with respect to the other to reach the cyclobutane configuration. 
The formation of the diradical via a gauche attachment, on the 
other hand, should be compared with a [2S + 2S] cycloaddition 
and with a different [2S + 2a] cycloaddition, one having a 
relatively small twist of the two ethylenes (Figure 4). Figure 3 
suggests that the dome diverts a concerted ethylene—ethylene 
attachment into becoming an attachment which forms instead 
a diradical, while in Figure 4 the same effect occurs unless the 
alignment is close enough that the system proceeds so close to 
the q\ axis that it passes through the saddle point indicated there 
on that axis. (However, as a precautionary note, it should be 
stressed that, at present, Figures 3 and 4 are drawn in the absence 
of a detailed calculation of the minimized surface.) 

From the usual contour plots for collinear A + BC — AB + 
C reactions there have been new insights, as in the dynamical 
basis of vibrational adiabaticity using reaction coordinates21 

based on the topography of the potential energy surface, and 
dynamical concepts such as those used in early and late downhill 
reactions.22 For other systems, too, it may be anticipated that 
the detailed dynamics will again depend on details such as 
curvatures,21 change of vibrational frequencies21 and torsions 
along an actual reaction path in the original iV-dimensional 
space, and factors related to angular momentum restrictions; 
but an initial overall picture may be provided by the global plot. 
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Appendix A. Transformation of Coordinates and Inverse 
Transformation 

The coordinate transformation given by eqs 3—8 can be 
written in matrix form as 

I I 

9i 

92 

93 

94 

95 

kJ 

A1 O ' 

P A2 

t « 
r23 
r13 
r2A 
r\A 
rn 
KJ 

where Ai is a symmetric orthogonal matrix and A2 is a rotation 

(21) Marcus, R. A. J. Chem. Phys. 1966, 45, 4500. Marcus, R. A. Ibid. 
1965, 43, 1598. 

(22) E.g.: Anlauf, K. G.; Kuntz, P. J.; Maylotte, D. H.; Pacey, P. D.; 
Polanyi, J. C. Discuss. Faraday Soc. 1967, 44, 183 and references cited 
therein. Laidler, K. J. Theories of Chemical Reaction Rates; McGraw-
Hill: New York, NY, 1969; pp 178-182. 
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matrix Xi = 0 for / > 3 and the lower of the two minima: 

1 
1 _ 2 

1 1 
- 1 
- 1 
. 1 

- i - i r 
i - i i 

- i i i 
i i i, 

^ 

'i 
.i 

- i ' 
i . 

It is readily verified that 

A - 1 = A 

(A2) 

(A3) 

where T denotes the transpose. Thereby, one finds that 

• « 2 _ 93 + 94) ( A 4 > r23 = %Ul\ 

ri3 = 1Z2C-̂ i + Ii ~ 93 + 94) 

r24 = '^ ( -^ l ~ 92 + 93 + 94) 

r14 = lltil + 9 2 + 93 + 93) 

r'2 = If^ + q6) 

' 3 4 ' 
J_ 
4i 

(9s ~ 96) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

We note in passing that the transformation is "distance 
conserving": 

qT-q = r W - A r = rT-r (AlO) 

Appendix B. Saddle-Point Regions and Their Survival 

We consider the behavior of a potential energy surface and 
the minimized surface in the vicinity of a first-order saddle point 
S of the original surface. 

Regardless of the coordinates used, a diagonalization of the 
force constant matrix (the Hessian) yields, in the vicinity of 
the saddle point, 

V= V0 --klX\ + -fjcrf 
2 2 2 

(Bl) 

Here, Vo is the value of Vat the saddle point x\ — ... — x„ = 0. 
The coefficients —k\, k2,..., k„ are the curvatures of the surface 
at S, the k's being all positive. In the case of n = 2, the contour 
lines in {x\jci) space, i.e., the lines of V = constant, are the 
hyperbolae, ^l2k2x\ — [f2k\X2

] = V — VQ. The contour lines 
passing through S have V = Vb, and hence consist of two such 
lines, -JkxXx ± -Jk1X1 = 0, as in Figure 3 or 4, for example. 
They form the two arms of the separatrix. When V is minimized 
with respect to the coordinates x3,..., x„, this n = 2 case results. 

On the other hand, if neither of the coordinates (X]J2) used 
as axes in the 2-D global contour plot contains the reaction 
coordinate, which will be denoted now by X3, we would have 

V=V0 + ; 2 > ? + V(X3) 
2 i*3 

(B2) 

where Vfe) is a double well potential energy function with a 
leading term — xl2k3x\ at the saddle point. The V(x3) has 
minima at x3 and xj, according to X3 > 0 or X3 < 0. One then 
sees the minimizing V with respect to the x, for (' > 2 leads to 

V(minimized) = V0 +
 1WA + M i ) + v(xf) (B3) 

where V(^) is the smaller of V(x3), which is the minimum 
when x-} > 0, and V(^) , which is the minimum when xi < 0. 
Thus, in this case, the separatrix has not survived the minimiza­
tion. 

We consider next the more general case which is intermediate 
between the above two extremes. We let the local reaction 
coordinate (the coordinate associated with the negative curva­
ture) contribute both to the (41,42) pair and to the variables 
involved in the minimization. For notational brevity all 
coordinates qi (and xi) are now defined relative to their values 
at the saddle point. For simplicity of presentation we suppose 
that both the reaction coordinate x\ and another coordinate x3 

contribute to q\ and 43 and consider the more general case later: 

2V=IV0-x\ + (o\ql + a)]x\ (B4) 

plus a term which contains the other coordinates. 
We relate x\ and x-$ to q\ and 43 by an orthogonal transforma­

tion: 

C1 = {qx + aq3)/(\ + a2)1'2 

x^i-aqt + qjd+a2)112 

Minimizing V with respect to 43 yields 

X3 = OX1I(O3 

so that now the V for the minimized plot is 

(B5) 

(B6) 

(B7) 

2V(minimized) = - ( I - a2l(o\)x\ + o)\q\ (B8) 

where qi (and *,•) can be expressed in terms of q\ using eqs 
B5—B7. Thus, the saddle point survives the minimization only 
if the coefficient of Xj in parentheses is positive, i.e., provided 
a2 < «3. That is, there is a survival only if the local reaction 
coordinate x\ does not contribute too greatly to the minimized 
variable q3, the fraction allowed being weighted by \lco\, the 
ratio of the negative force constant of the reaction coordinate 
JCI motion to the force constant for the JC3 coordinate. 

The result is immediately extended to many variables: The 
potential energy V can be written as 

V = V 0 + ^q1Kq (B9) 

in the vicinity of the saddle point. The vectors and matrices 
can be written as 

LQb 
K = (BlO) 

where qa is a vector with components q\ and q2, qb has 
components 43, ..., q„, Kaa is a symmetric 2 x 2 matrix, and 
Kbb is a symmetric N — 2 x N — 2 matrix. 

On minimizing V and solving for qb in terms of qa one obtains 
qb = -Kbb - ' Kbaqa and from it 

^=^+ ' / 2 qI[K a a -K a b K b b - 'Kba]qa (BH) 

The saddle point survives the minimization if the matrix in 
brackets has a negative eigenvalue. 
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